Prioritizing the risk of plant pests by clustering methods; self-organising maps, k-means and hierarchical clustering

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-Organising Maps for Tree View Based Hierarchical Document Clustering

In this paper we investigate the use of SelfOrganising Maps (SOM) for document clustering. Previous methods using the SOM to cluster documents have used twodimensional maps. This paper presents a hierarchical and growing method using a series of one-dimensional maps instead. Using this type of SOM is an efficient method for clustering documents and browsing them in a dynamically generated tree ...

متن کامل

Divisive Hierarchical Clustering with K-means and Agglomerative Hierarchical Clustering

To implement divisive hierarchical clustering algorithm with K-means and to apply Agglomerative Hierarchical Clustering on the resultant data in data mining where efficient and accurate result. In Hierarchical Clustering by finding the initial k centroids in a fixed manner instead of randomly choosing them. In which k centroids are chosen by dividing the one dimensional data of a particular clu...

متن کامل

Self-organizing Maps as Substitutes for K-Means Clustering

One of the most widely used clustering techniques used in GISc problems is the k-means algorithm. One of the most important issues in the correct use of k-means is the initialization procedure that ultimately determines which part of the solution space will be searched. In this paper we briefly review different initialization procedures, and propose Kohonen’s SelfOrganizing Maps as the most con...

متن کامل

Visual divisive hierarchical clustering using k-means

This paper presents a browser-based semi-automatic taxonomy construction tool Vd-chuck which is able to incorporate text and data mining algorithms into a userfriendly interface. The presented system is browserbased. Its unsupervised learning for concept suggestion and different visualization techniques assist the user with textual and numerical data analysis. We tested the Vdchuck system on a ...

متن کامل

Understanding K-Means Non-hierarchical Clustering

The K-means algorithm is a popular approach to finding clusters due to its simplicity of implementation and fast execution. It appears extensively in the machine learning literature and in most datamining suites of tools. However, its implementation simplicity masks an algorithm whose behavior is complex. Understanding the algorithm’s behavior is vital to successful use and interpreting the res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: NeoBiota

سال: 2013

ISSN: 1314-2488,1619-0033

DOI: 10.3897/neobiota.18.4042